Conformal Methods
- Penrose R: Zero Rest-Mass Fields Including Gravitation:
Asymptotic Behaviour, Proc. R. Soc. Lond. A 284 (1965),
159
NB: (+ - - -), $\mu=0,\,1,\,2,\,3$, conformal
invariance of zero rest-mass fields.
- Penrose R: Structure of Space-Time, in Battelle Rencontres,
eds. C M DeWitt, J A Wheeler, (New York: W A Benjamin Inc., 1968),
121
- Schmidt B G: A New Definition of Conformal and Projective
Infinity of Space-Times, Commun. Math. Phys. 36
(1974), 73
- Friedrich H: On the Regular and the Asymptotic Characteristic
Initial Value Problem for
Einstein's Vacuum Field Equations,
Proc. R. Soc. Lond. A
375 (1981), 169
NB:
Employs NP spin-frame
formalism. Very technical. (+ -
- -).
Communicated by S W Hawking.
- Friedrich H: The Asymptotic Characteristic Initial Value
Problem for Einstein's Vacuum
Field Equations as an Initial
Value Problem for a
First-Order Quasilinear
Symmetric Hyperbolic System,
Proc. R. Soc. Lond. A
378 (1981), 401
NB: Employs NP spin-frame
formalism. Very
technical. (+ - - -).
Communicated by S W Hawking.
- Goode S W, J Wainwright: Isotropic Singularities in
Cosmological Models, Class. Quantum Grav. 2 (1985),
99
NB: The introductory paper on their continued programme of investigations
relating to "isotropic singularities" (cf.: Barrow 1978),
"quiescent cosmology" and Penrose's Weyl curvature hypothesis (here:
WTH). (- + + +).
- Newman R P A C: On the Structure of Conformal Singularities
in Classical General Relativity, Proc. R. Soc. Lond. A
443 (1993), 473
NB: Provides arguments why
"conformal singularity" should be preferred to "isotropic
singularity".
(+ - - -).
- Baumgarte T W, S L Shapiro: Numerical Integration of
Einstein's Field Equations, Phys. Rev. D 59 (1998),
024007.
Also: Preprint
gr-qc/9810065.
- Frauendiener J: Numerical Treatment of the Hyperboloidal
Initial Value Problem for the Vacuum Einstein Equations. I. The
Conformal Field Equations, Phys. Rev. D 58 (1998), 064002.
Also: Preprint
gr-qc/9712050.
- Friedrich H: Einstein's Equation and Conformal Structure,
in The Geometric Universe: Science, Geometry and the Work
of Roger Penrose, eds. S A Huggett, L J Mason, K P Tod,
S S Tsou, N M J Woodhouse, (Oxford: Oxford University Press,
1998), 81
- Anguige K, K P Tod: Isotropic Cosmological Singularities
I. Polytropic Perfect Fluid Spacetimes, Ann. Phys. (N.Y.)
276 (1999), 257.
Also: Preprint
gr-qc/9903008.
NB: $p(\mu) = (\gamma-1)\,\mu$, $1 < \gamma
\leq 2$. (+ - - -).
- Hübner P: How to Avoid Artificial Boundaries in the
Numerical Calculation of Black Hole Spacetimes,
Class. Quantum Grav. 16 (1999), 2145 (Paper I).
Also: Preprint
gr-qc/9804065.
- Frauendiener J:
Conformal Infinity, Max-Planck-Gesellschaft Living Reviews
Series, No. 2000-4
Selected References
Last revision: Fri, 25-8-2000 (This page is under construction)